首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   1篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2016年   6篇
  2015年   3篇
  2014年   3篇
  2013年   4篇
  2012年   1篇
  2011年   2篇
  2010年   4篇
  2009年   5篇
  2008年   5篇
  2007年   7篇
  2006年   7篇
  2005年   4篇
  2003年   2篇
  2002年   2篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1990年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有77条查询结果,搜索用时 234 毫秒
21.
Deryabin  D. G.  Galadzhieva  A. A.  Duskaev  G. K. 《Microbiology》2020,89(6):733-739
Microbiology - The aim of the study was screening of chemical compounds library to find “quorum sensing” modulators in proteobacteria. The library included 19 molecules that contained...  相似文献   
22.
Using an intensity rating with no external calibration, experiments were designed to measure the sensory oil-water partition coefficients of four aroma molecules (benzaldehyde, ethyl butyrate, linalool and acetophenone) as the ratios of concentration producing stimuli of equivalent intensities. Flavored water and oil phases were successively assessed for odor intensity by 24 panelists who were given total freedom regarding scaling strategy. Each session combined five concentration levels of three out of the four studied aromas in a solvent (water or oil). A predominant concentration effect was found for each aroma in both solvents and concentration dependencies of perceived intensity above water and oil were similar. Experimental data were modeled with Fechner, Stevens and Hill equations. Combining results above water and oil solutions to feed a common model led to the evaluation of an overall sensory oil-water partition coefficient for each aroma compound. All three models produced similar partition coefficient values for each aroma that were lower than the related instrumental partition coefficients. Biases previously detected when external calibration had been used were reduced in a large proportion while suggested enhancement of odor intensity by water vapor could not be excluded.  相似文献   
23.
The influence of sugars on the development of oxidative stress induced by hypothermia was investigated in the leaves of two genotypes of potato (Solanum tuberosum L.) grown in vitro on the Murashige and Skoog medium supplemented with 2% sucrose. We used wild-type plants of potato, cv. Désirée, and potato plants expressing a yeast invertase gene under the control of the B33 class I patatin promoter and carrying a sequence of proteinase inhibitor II leader peptide for the apoplastic enzyme localization. At temperature of 22°C optimal for growth, expression of the yeast invertase gene in the leaves of transformed plants brought about a modification in the carbohydrate metabolism manifested in the activation of acid forms of invertase and accumulation of intracellular sugars (predominantly of sucrose because of its resynthesis). The exposure of plants to light under prolonged hypothermia (5°C, 6 days) activated all the forms of invertase (predominantly of acid invertase) and induced accumulation of sugars. In the leaves of potato expressing the yeast invertase gene, these processes were more intense. Under chilling, superoxide dismutase activity and the rate of lipid peroxidation in the leaves of investigated potato genotypes depended on the level of accumulated intracellular sugars. It was concluded that sugars play an important role as stabilizers of cellular membranes and scavengers of reactive oxygen species decelerating the processes of free radical oxidation of biomolecules upon the development of oxidative stress induced by hypothermia.  相似文献   
24.
Potato (Solanum tuberosum L.) plants were transformed with the desA gene encoding Δ12 acyl-lipid desaturase in the cyanobacterium Synechocystis sp. PCC 6803. To evaluate the efficiency of this gene expression in the plant, its sequence was translationally fused with the sequence of the reporter gene encoding thermostable lichenase. A comparison of native and hybrid gene expression showed that lichenase retained its activity and thermostability within the hybrid protein, whereas desaturase retained its capability of inserting the double bond in fatty acid (FA) chains and, thus, to modify their composition in membrane lipids. In most transformed plants, shoots contained higher amounts of polyunsaturated FAs, linoleic and linolenic (by 39–73 and 12–41%, respectively). The total absolute content of unsaturated FAs was also higher in transformants by 20–42% as compared to wild-type plants. When transformed plants were severely cooled (to ?7°C), the rate of their membrane lipid peroxidation was not enhanced, whereas in wild-type plants, it increased substantially (by 25%) under such conditions. These results could indicate a higher tolerance of transformed plants to low temperatures and the oxidative stress induced by hypothermia.  相似文献   
25.
A “coarse-grained” model of protein conformational mobility is presented. The conformational paths in five proteins, predicted using the model, are compared with those obtained by the nearest-neighbor method basing on the small-angle X-ray scattering data. The sequences of conformations evaluated with the help of these two approaches have been shown for all proteins under consideration to coincide well; yet there are exceptions, their causes having to be considered for each protein separately.  相似文献   
26.
Acclimation of foliage to growth temperature involves both structural and physiological modifications, but the relative importance of these two mechanisms of acclimation is poorly known, especially for isoprene emission responses. We grew hybrid aspen (Populus tremula x P. tremuloides) under control (day/night temperature of 25/20 °C) and high temperature conditions (35/27 °C) to gain insight into the structural and physiological acclimation controls. Growth at high temperature resulted in larger and thinner leaves with smaller and more densely packed chloroplasts and with lower leaf dry mass per area (MA). High growth temperature also led to lower photosynthetic and respiration rates, isoprene emission rate and leaf pigment content and isoprene substrate dimethylallyl diphosphate pool size per unit area, but to greater stomatal conductance. However, all physiological characteristics were similar when expressed per unit dry mass, indicating that the area‐based differences were primarily driven by MA. Acclimation to high temperature further increased heat stability of photosynthesis and increased activation energies for isoprene emission and isoprene synthase rate constant. This study demonstrates that temperature acclimation of photosynthetic and isoprene emission characteristics per unit leaf area were primarily driven by structural modifications, and we argue that future studies investigating acclimation to growth temperature must consider structural modifications.  相似文献   
27.
he fact of long-term preservation of the physicochemical properties of DNA molecules in aqueous solutions in complexes with methylresorcinol, hexylresorcinol, and tyrosol, the chemical analogues of microbial autoregulators (d1 factors) from the group of alkylhydroxybenzenes (AOB), was established. Compared to the control variants of storage of aqueous DNA solutions, the AOB influence consisted in the sum of correlating effects: the prevention of DNA degradation (according to spectrophotometric parameters) and the preservation of its viscous characteristics and electrophoretic mobility. The initial DNA properties were preserved to the greatest degree in the presence of hexylresorcinol, the compound with the longest alkyl radical. Possible mechanisms of the protective action of alkylhydroxybenzenes in relation to DNA are discussed, namely, the prevention of its hydrolysis due to isolation from the aqueous environment and maintaining DNA stability in the dormant forms of microorganisms.  相似文献   
28.
Tolerance to chilling was compared under in vitro conditions in potato plants (Solanum tuberosum L., cv. Désirée) transformed with a yeast-derived invertase gene under the control of the B33 class 1 tuber-specific promoter (the B33-inv plants) and potato plants transformed only with a reporter gene (the control plants). The expression of the inserted yeast invertase gene was proved by following the acid and alkaline invertase activities and sugar contents in the leaves under the optimum temperature (22°C). The total activities of acid and alkaline invertases in the B33-inv plants exceeded those in the control plants by the factors of 2–3 and 1.3, respectively. In the B33-inv plants, the activity of acid invertase twice exceeded that of the alkaline invertase, whereas the difference equaled 12% in the control plants. The contents of sucrose and glucose increased in the B33-inv plants by 21 and 13%, respectively, as compared to the control. Chilling at +3 and –1°C for 1, 3, and 6 h did not affect the rate of lipid peroxidation, as measured by the content of malonic dialdehyde (MDA) in the leaves of the genotypes under study. Only the longer exposures (24 h at +3 and –1°C and 7 days at +5°C) produced a significant decline in the MDA content in the B33-invplants, as compared to the control. Following short freezing (20 min at –9°C), the content of MDA increased by 50% in the leaves of the control plants, while in the B33-inv plants, cold-treated and control plants did not differ in the MDA content. The authors presume that the potato plants transformed with the yeast invertase gene acquire a higher tolerance to low temperatures as compared to the control plants, apparently due to the changes in sugar ratio produced by the foreign invertase.  相似文献   
29.
30.
Abstract In normal air, illumination with a low level of blue or red light (40 μmol m?2 s?1) did not induce stomatal opening in maize plantlets. In CO2-free air, 40 μmol m?2 s?1 of blue or red light promoted an enhancement in stomatal opening. At the same quantum flux, blue light was more efficient than red light and stomatal closure occurred more rapidly with a significantly shorter lag phase after blue light. Anoxia inhibited light-dependent stomatal opening, even under 320 μmol m?2 s?1 illumination. However, after 60 min of illumination with 40 μmol m?2 s?1 of blue light in anoxia, transient stomatal opening was observed when the plant was returned to darkness and normal air. This transient stomatal opening was weaker after pretreatment with red light. We conclude that a blue-light-dependent process induced under anoxia leads to stomatal opening provided oxygen is present. Possible mechanisms associated with blue-light-effect and the nature of the oxygen-consuming processes are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号